The authors said their findings showed that E. gallinarum translocates into systemic organs as a result of the breakdown of the gut barrier in autoimmune-prone hosts to drive autoimmune pathogenesis. They suggested that the translocating bacteria skewed T helper cell differentiation but also acted directly on colonized tissues such as the liver to induce autoantigens, endogenous retrovirus proteins, cytokines, and other autoimmune-promoting factors.
“If the complexity of host-tissue microbiota interactions is considered in chronic autoimmunity, it may offer new therapeutic avenues for these debilitating and potentially lethal diseases,” they concluded.
The study was supported by grants from various institutes and initiatives within the National Institutes of Health as well as from the Arthritis National Research Foundation, the Arthritis Foundation, and the Lupus Research Institute. Dr. Vieira and the senior author, Martin A. Kriegel, MD, PhD, are inventors on a patent application filed by Yale University related to the use of antibiotics and commensal vaccination to treat autoimmunity.
SOURCE: Vieira S et al. Science. 2018;359(6380):1156-61.